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High-accuracy finite-difference time domain
algorithm for the coupled wave equation
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Using a nonstandard (NS) finite difference model, we derived a high-accuracy finite-difference time domain
algorithm to solve the coupled wave equation. The conventional NS-Yee algorithm can greatly reduce the error
of the difference approximation and accurately solve the Maxwell’s equations even for sub-wavelength whis-
pering gallery modes, which are very sensitive to the scatterer model on the numerical grid. However, relative
to the transverse magnetic mode, the error in the transverse electric mode is large because ��
��=permittivity� is not accurately represented [J. Opt. Soc. Am. B 27, 631 (2010)]. In this paper, we derive a
nonstandard finite-difference time domain algorithm to solve the coupled wave equation which accurately in-
cludes ��, and we demonstrate its higher accuracy and shorter computing time. © 2010 Optical Society of
America
OCIS codes: 260.5740, 290.4020.
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. INTRODUCTION
n nonconducting, dispersion-less, and linear isotropic
edia the Maxwell equations become

− ��tH = � � E, �1�

��tE = � � H, �2�

here �t=� /�t, � is the permittivity, � is the permeability,
= �Ex ,Ey ,Ez� is the electric field, and H= �Hx ,Hy ,Hz� is

he magnetic field. The nonstandard (NS)-Yee algorithm
1] can accurately solve the Maxwell equations even for
ub-wavelength whispering gallery modes (WGMs).

WGMs are resonances in the interiors of highly sym-
etric structures such as infinite cylinders and spheres.
GMs strongly confine the light to the structure because

he electromagnetic field outside the structure is weakly
oupled to the inside. Thus the excitation is very slow and
he error accumulates in the simulation. Sub-wavelength

GMs are especially sensitive to the scatterer model on
he numerical grid [2].

In simulations of sub-wavelength WGMs, we found
hat the error of the NS-Yee algorithm is larger in the
ransverse electric (TE) mode (E perpendicular to media
nterfaces) than in the transverse magnetic (TM) mode (E
arallel to media interfaces). We believe that this higher
rror arises because �� is not accurately represented in
he NS-Yee algorithm. In the TM mode, Gauss’ law,
· ��E�=E ·��+�� ·E=0, gives

E · �� = � · E = 0, �3�

ecause of E���. Thus the Maxwell equations reduce to
he homogeneous wave equation,
0740-3224/10/071409-5/$15.00 © 2
��t
2 − v2�2�E = 0, �4�

here v=1/���. The NS-Yee algorithm gives excellent re-
ults in the TM mode, because it is optimized to the ho-
ogeneous wave equation. In the TE mode, however, Eq.

3) is not satisfied because E ���⇒� ·E�0, and we are
eft with the inhomogeneous coupled wave equation,

��t
2 − v2�2�E = − v2 � �� · E�. �5�

t media interfaces, in the TE mode the NS-Yee algo-
ithm does not accurately include ��� ·E� because it is op-
imized to the homogeneous wave equation.

Other authors have considered a coupled wave equa-
ion approach [3,4], but found no particular advantage. In
his paper, using a nonstandard finite-difference (NS-FD)
odel [5], we derive a high-accuracy nonstandard finite-

ifference time domain (NS-FDTD) algorithm to solve the
oupled wave equation which accurately includes ��, and
e demonstrate its high accuracy and greater computing

peed.
For brevity and to avoid confusion, hereafter, by

FDTD” we mean the finite-difference time domain
FDTD) algorithm to solve the coupled wave equation.
he Yee algorithm solves the Maxwell equations.

. FDTD ALGORITHMS FOR COUPLED
AVE EQUATION

. Standard FDTD Algorithm
he finite-difference (FD) approximation to a derivative is
iven by
010 Optical Society of America
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df�x�

dx
�

dxf�x�

h
, �6�

here h is the grid spacing and dx is the difference opera-
or defined by dxf�x�= f�x+h /2�− f�x−h /2�. For reasons
hat will soon be obvious we call Eq. (6) the standard
nite-difference (S-FD) approximation. Analogously we
efine dy and dt.
In the TE mode the coupled wave equation can be ex-

anded for the Ex component,

�t
2Ex = v2��y

2Ex − �x�yEy�. �7�

eplacing the derivatives in Eq. (7) with the S-FD ap-
roximations, we obtain

dt
2Ex =

v2�t2

h2 �dy
2Ex − dxdyEy�. �8�

xpanding dt
2Ex and solving for Ex�x ,y , t+�t� yields the

tandard finite-difference time domain (S-FDTD) algo-
ithm,

Ex
t+�t = − Ex

t−�t + 2Ex
t +

v2�t2

h2 �dy
2Ex

t − dxdyEy
t �, �9�

here for simplicity we write Ex�x ,y , t�→Ex
t . The Ey for-

ulation is obtained by exchanging x and y in Eq. (9).
Each electric field component lies at a different position

n the numerical grid so that central FD approximations
an be used for the spatial derivatives. As shown in Fig. 1,
ur arrangements are

Ex
t → Ex�x,y + h/2,t�, �10�

Ey
t → Ey�x + h/2,y,t�. �11�

The scattered field formula also can be derived easily.
he total electric field E can be decomposed into a sum of
he incident field E0 and the scattered field Es. E0 satis-
es the homogeneous wave equation (4). Using v=v0 in
q. (4) and subtracting from Eq. (5), we obtain the
oupled wave equation for the scattered field,

��t
2 − v2�2�Es = − ��� · Es� + J, �12�

here J is the source term and is given by

ig. 1. Layout of the electric field on the numerical grid (h
grid spacing). Ex�x ,y+h /2� and Ey�x+h /2 ,y� lie at different
ositions.
J = �v2

v0
2 − 1��t

2E0. �13�

he S-FDTD algorithm for the scattered field also can be
erived in a similar way.

. Nonstandard FDTD Algorithm
he error of the S-FD approximation is defined by �Sf�x�
�h�x−dx�f�x� and �S�h2. One could try to reduce the er-
or by using higher-order FD approximations, but this not
nly complicates the algorithm but also a higher-order
ifference equation may have unstable spurious solu-
ions. Using what is called the NS-FD approximation [5],
owever, it is possible to greatly reduce the error of the
DTD algorithm without reducing the grid spacing or us-

ng higher order FD approximations.
In one dimension the NS-FD approximation has the

orm

df�x�

dx
=

dxf�x�

s�h�
, �14�

here s�h� is a correction function. It might seem that the
hoice s�h�=dxf�x� / f��x� would make the approximation
rror vanish, but this choice is not always valid because
he right side of Eq. (14) must converge to f��x� in the
imit h→0. For a monochromatic wave eikx (k=wave num-
er) an exact FD expression is obtained by putting s�h�
s�k ,h�, where

s�k,h� =
2

k
sin�kh

2 � . �15�

nalogously we find �tf�t�=dtf�t� /s�� ,�t� for f�t�=e±i�t (�
angular frequency).
In two or three dimensions, however, there is no exact

S-FD expression for the spatial derivatives because
�k ,h� depends on direction of the wave, k= �kx ,ky�. We
ound that the spatial error can be greatly reduced by us-
ng NS-FD approximations. In Eq. (7), there are two spa-
ial derivatives: �y

2 and �x�y. First we consider the S-FD
pproximations of �y

2. The error is defined by

�yy
S � = �h2�y

2 − dy
2��, �16�

here �=ei�kxx+kyy� and �kx ,ky�=k�cos 	 ,sin 	�. Expanding
n a Taylor series, we find

�yy
S = k4h4�−

sin2 	

12
+

sin2�2	�

48 � + k6h6� sin2 	

360

−
sin2�2	��1 + sin2 	�

1440 � + O�k8h8�, �17�

here O�k8h8� denotes terms of order h8 or higher. We
ound a good NS-FD approximation by using syy�k ,h�
�2/k�sin�kh /2�. Putting h→syy�k ,h� in Eq. (16), we ob-

ain

�yy
NS = k4h4

sin2�2	�

48
− k6h6

sin2�2	��1 + sin2 	�

1440
+ O�k8h8�.

�18�
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Next we consider the S-FD approximation of �x�y. Simi-
arly, the error is defined by

�xy
S � = �h2�x�y − dxdy��. �19�

xpanding in a Taylor series, we find

�xy
S = − k4h4

sin�2	�

48
+ k6h6� sin�2	�

3840
+

sin3�2	�

11,520 � + O�k8h8�.

�20�

e found a very good NS-FD approximation by using

xy�k ,h�=��2h /k�sin�kh /2�. Putting h→sxy�k ,h� in Eq.
19), we obtain

�xy
NS = k6h6

sin3�2	�

11,520
+ O�k8h8�. �21�

eplacing derivatives in Eq. (5) with the NS-FD approxi-
ations, we obtain a new NS-FDTD algorithm to solve

he coupled wave equation,

Ex
t+�t = − Ex

t−�t + 2Ex
t + u1dy

2Ex
t − u2dxdyEy

t , �22�

here

u1 =
sin2���t/2�

sin2�kh/2�
, �23�

u2 =
2 sin2���t/2�

kh sin�kh/2�
. �24�

he Ey formulation is obtained by exchanging x and y in
q. (22).
The NS scattered field formula can be derived in a simi-

ar way from Eq. (12). In three dimensions the NS-FD ap-
roximations also can be used for �z

2, �x�z, �y�z.

. NUMERICAL STABILITY
n homogeneous media, the numerical stability of the
DTD algorithm is the same as the Yee algorithm. Here
e derive the stability conditions for inhomogeneous me-
ia. The S-FDTD and NS-FDTD algorithms can be cast
nto the generic form

En+1 = − En−1 + AEn, �25�

here Et→En for t=n�t �n=integer� and A is given by

A = �2 + u1dy
2 − u2dxdy

− u2dxdy 2 + u1dx
2� . �26�

n the S-FDTD algorithm u1=u2=v2�t2 /h2, and in the
S-FDTD algorithm u1 and u2 are defined by Eqs. (23)
nd (24). Expanding Eq. (25), we find

En+1 = − PnE0 + Pn+1E1, �27�

here Pn and Pn+1 are given by

�28�
here I is the identity matrix. If Pn does not diverge as
→
, the algorithm is stable. Thus the stability condition

s ����1, where � is the eigenvalue of the block matrix B.
o compute �, we solve

	B − �� I 0

0 I�	 = 0. �29�

Defining dx�=Dx� (Dy is analogously defined), we
valuate the difference operators with respect to the
onochromatic wave � and obtain

Dx
2 = − 4 sin2�kxh/2�, �30�

Dy
2 = − 4 sin2�kyh/2�, �31�

DxDy = − 4 sin�kxh/2�sin�kyh/2�, �32�

nd evaluate � with respect to �. The most severe con-
traint is obtained by putting Dx

2=Dy
2=DxDy=−4,

� = �1 − 2u+ ± �u+�u+ − 1�

1 − 2u− ± �u−�u− − 1�� , �33�

here u±=u1±u2. Using ����1, the stability condition of
he S-FDTD algorithm becomes

v�t

h
�

1

�2
� 0.7071. �34�

sing �=vk and k=2
 /�, the stability condition of the
S-FDTD algorithm becomes

v�t

h
�

�



arc sin� �
 sin�
/��

�
 + � sin�
/��
� , �35�

here �=� /h. Figure 2 shows max�v�t /h� as a function
f � /h. The stability conditions of the S-FDTD and
S-FDTD algorithms become the same as � /h→
.

. ALGORITHM VERIFICATION
. Accuracy Comparison: S-FDTD versus NS-FDTD
or sub-wavelength Mie scattering (off-resonance) and
GM (on-resonance), we compared the S-FDTD and NS-

DTD algorithms to solve the coupled wave equation with
ie theory [6] and verified its accuracy. We calculate the

cattering due to an infinite plane wave impinging upon a
ielectric cylinder in the TE mode (Fig. 3). We choose the
ncident wave vector to be in the direction of the positive

ig. 2. Stability. Maximum allowed value of v�t /h for the NS-
DTD algorithm (�=wavelength, h=grid spacing).
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-axis and the incident electric field to be polarized in the
-direction. Since the scattered field intensity �Ex

s�2 is rela-
ively small, we examine �Ey

s�2.
We terminate the computational domain with Higdon’s

bsorbing boundary condition [7]. We modeled the scat-
erer on the grid using the TE fuzzy model [2]. Example
arameters used for off- and on-resonance calculations
re listed in Table 1.
In Figs. 4 and 5(a)–5(c) we visualize the converged �Ey

s�2
istributions (at 500 time steps off-resonance; 100,000
ime steps on-resonance). In Figs. 4 and 5(d) we plot �Ey

s�2
n a circular contour of radius 1.1a around the cylinder
enter (a=cylinder radius). As shown in Figs. 4 and 5, the
S-FDTD algorithm is much more accurate than the
-FDTD one. The accuracy for the WGM is slightly lower
han for off-resonance, because during the long excitation
ime errors accumulate and the TE fuzzy model does not
ccurately capture all aspects of the scatterer shape.

. Accuracy: Yee versus NS-FDTD
or the sub-wavelength WGM, we compared the accuracy
f the Yee algorithms (to solve the Maxwell equations)
ith the NS-FDTD algorithm (to solve the coupled wave

ig. 3. Infinite plane wave impinging on an infinite dielectric
ylinder (a=radius, k=wave vector). TM and TE polarizations
re shown. Wave propagates along +x-axis.

Table 1. Computational Parameters in the
Simulation of the S-FDTD Algorithm versus the

NS-FDTD One

Off-Resonance

rid size 80 nm�80 nm
avelength 640 nm
ylinder radius 640 nm
omputation space 5120 nm�5120 nm
efractive index 1.6

On-Resonance (WGM)

rid size 10 nm�10 nm
avelength 640 nm
ylinder radius 320 nm
omputation space 1280 nm�1280 nm
efractive index 2.683
quation). We calculated the root-mean-square (RMS) er-
or of the converged scattered intensity relative to Mie
heory in Fig. 6. The simulation parameters are the same
s in Table 1 (on-resonance) except for the grid size.
As seen in Fig. 6, on a coarse grid (small value of � /h),

he NS-Yee algorithm is more accurate than the NS-
DTD one since the NS-Yee error in a uniform medium is
roportional to k6h6 and the NS-FDTD error is propor-
ional to k4h4. On a finer grid (large value of � /h), how-
ver, the NS-FDTD algorithm is somewhat more accurate
ecause here the dominant source of error is the error of
he scatterer grid model. On the other hand, in the NS-
DTD algorithm, the error of the scatterer model error on

he numerical grid is smaller.

ig. 4. (Color online) Off-resonance FDTD calculation of �Ey
s�2.

he intensity distributions are visualized. (a) Analytical solution.
b) S-FDTD calculation. (c) NS-FDTD calculation. (d) Angular in-
ensity distributions.

ig. 5. (Color online) WGM (on-resonance) FDTD calculation of
Ey

s�2. The intensity distributions are visualized. (a) Analytical so-
ution. (b) S-FDTD calculation. (c) NS-FDTD calculation. (d) An-
ular intensity distributions.
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. Computational Cost: Yee versus NS-FDTD
e compared the storage cost and computing time of the

ee algorithms with the NS-FDTD algorithm. The storage
ost of our coupled wave equation approach is the same as
he Yee algorithms, because the coupled wave equation in-
ludes �t

2 operator which requires Et and Et−�t to calculate
t+�t, whereas the Maxwell equations compute both E
nd H.
Since only E is computed in the coupled wave equation,

he NS-FDTD algorithm can reduce the computing time
elative to Yee algorithms; however, both Yee and NS-
DTD algorithms need the same number of time steps to
onverge. In Fig. 7, we plotted the computing time for
000 steps as a function of the grid fineness. As seen in

ig. 6. (Color online) RMS error in the �Ey
s�2 angular distribution

s a function of grid fineness, for the sub-wavelength WGM. The
onverged time is defined by 10,000� �� /h� /64.

ig. 7. (Color online) Computing time for 1000 steps as a func-
ion of grid fineness [using Intel(R) Core(TM) 2 Duo Processor
.33 GHz, DDR2–800 SDRAM].
ig. 7, the NS-FDTD algorithm is about twice as fast as
he Yee algorithms. Note that the magnetic field can be
omputed from the Maxwell equations easily using the
lectric field.

. CONCLUSION AND DISCUSSION
e developed a nonstandard finite difference time do-
ain (NS-FDTD) algorithm to accurately solve the

oupled wave equation. This NS-FDTD algorithm theo-
etically takes into account �� better than the conven-
ional NS-Yee algorithm.

We demonstrated that the NS-FDTD algorithm is
uch more accurate than the conventional standard fi-
ite difference time domain (S-FDTD) algorithm and can
ccurately solve the sub-wavelength whispering gallery
ode (WGM). The NS-FDTD algorithm is the same or
ore accurate than the NS-Yee one. We also demon-

trated that our algorithm runs about twice as fast as the
ee algorithms. We are now extending our work to three
imensions and dispersive materials.
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equation FD-TD method for the efficient eigenvalue analy-
sis and S-matrix computation of wave guide structures,”
IEEE Trans. Microwave Theory Tech. 41, 2109–2115 (1993).

5. R. E. Mickens, Nonstandard Finite Difference Models of
Differential Equation (World Scientific, 1994).

6. P. W. Barber and S. C. Hill, Light Scattering by Particles:
Computational Methods (World Scientific, 1990).

7. R. L. Higdon, “Absorbing boundary conditions for difference
approximations to the multi-dimensional wave equation,”
Math. Comput. 47, 437–459 (1986).


