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The nonstandard (NS) finite-difference time domain (FDTD) algorithm has proved be remarkably accurate on
a coarse numerical grid, but the well-known resonances called whispering gallery modes (WGMs) in the Mie
regime are very sensitive to the scatterer representation on the computational grid, and a very large number
of time steps are needed to correctly calculate the modes because the electromagnetic field outside the scatterer
is weakly coupled to the inside. Using the NS-FDTD algorithm on a coarse grid, we were able to accurately
simulate the WGMs of dielectric cylinders in the Mie regime. © 2010 Optical Society of America

OCIS codes: 260.5740, 290.4020.

1. INTRODUCTION

Whispering gallery modes (WGMs) were first observed as
acoustic resonances in the interiors of such structures as
cathedral domes and were analytically described by Lord
Rayleigh [1]. Optical WGMs can be excited in dielectric
and conducting objects. Debye [2] derived expressions for
the resonance frequencies of dielectric and metallic
spheres.

Since Garrett’s [3] experimental work, WGMs have
been used to measure spherical particle sizes, refractive
index, and temperature [4]. In recent years much re-
search effort has focused on microresonators, narrowband
filters, optical switches, and biosensors using the proper-
ties of WGMs [5]. In addition WGMs have lately found
various applications in optical communication and infor-
mation processing.

For simple highly symmetric shapes such as infinite
cylinders and spheres, Mie theory [6] can be used to cal-
culate WGMs, but for more complicated shapes no general
analytic solutions exist and numerical calculations are a
necessity. The finite-difference time domain (FDTD) algo-
rithm [7] can handle arbitrary shapes and has success-
fully been used to solve many problems. However the er-
ror of the conventional FDTD algorithm is proportional to
(h/N)2, where h is the grid interval and \ is the wave-
length and is large on a coarse grid. Recently we have de-
rived a new version of the FDTD algorithm from a non-
standard (NS) finite-difference model [8] that gives much
higher accuracy than the conventional FDTD. Although
we had verified that NS-FDTD gives excellent results for
off-resonance Mie scattering, we had not checked its ac-
curacy for the WGMs in the Mie regime.

The electromagnetic fields of a Mie resonance are very
sensitive to size, shape, and refractive index and vary
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rapidly with small perturbations. In FDTD calculations
the result can be affected by perturbations of the algo-
rithm parameters and by such extraneous parameters as
how the scatterer is represented on the numerical grid
and by how the computational domain is terminated. The
correct calculation of WGMs in the Mie regime is thus a
severe test of any numerical algorithm for optical model-
ing. We have used our NS-FDTD algorithm to compute
the WGMs of infinite dielectric cylinders and have veri-
fied that we can achieve high accuracy on a relatively
coarse numerical grid that is terminated with Berenger’s
perfectly matched layer (PML) absorbing boundary condi-
tion [9]. In this paper we give details of the algorithm and
introduce improvements to our previously published algo-
rithms.

2. WHISPERING GALLERY MODES

For simplicity, let us consider the two-dimensional Mie
scattering problem in which an infinite plane wave of
wavelength N\ impinges upon an infinite dielectric circular
cylinder parallel to the z axis of radius a and index of re-
fraction n in the Mie regime \ ~a (Fig. 1). This problem
can be separated into two modes: the transverse magnetic
(TM) mode (E,=E,=H,=0) and the transverse electric
(TE) mode (E,=H,=H,=0), where E=(E,,E,,E,) is the
electric field and H=(H,,H,,H,) is the magnetic field.
The geometry of the problem is illustrated in Fig. 1.

In the TM mode Maxwell’s equations for E reduce to
the Helmholtz equation in E,,

(VZ+RHE, =0, (1)

where k=27/\. In the TM mode the fields are indepen-
dent of z, so E,=E,(x,y). Outside the cylinder E, is the

© 2010 Optical Society of America
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2 E(TM)

Fig. 1. Infinite plane wave impinging on an infinite dielectric
cylinder (a=radius, k=wave vector). TM and TE polarizations
are shown. Wave propagates along the +x axis.

sum of the incident field Egzeikx, and the outgoing scat-
tered field is E}. Taking (x,y)=r(cos 6,sin 6), E; can be ex-
panded in the form

%

EXr,0)=— > i'b HV(kr)ei?, 2)

(=—

where qul)(x) is the Hankel function of the first kind and
the b, are expansion coefficients to be determined. The
electric field inside the cylinder, E}, can be expanded in
the form

©

El(r,0)= D, i'dJ (nkr)e'?, (3)

{=—0

where J,(x) is the Bessel function of the first kind, and
the d, are expansion coefficients. The expansion coeffi-
cients in Eq. (2) and Eq. (3) are determined by the physi-
cal conditions that both E, and its derivative normal to
cylinder boundary 4,E, (J, means d/dr) must be continu-
ous on the boundary. Using the fact that

©

E0=eth= > i (kr)e't?, (4)
f=—x
we obtain
Ei(r,0)=E2(a,0) + Ei(a,0), (5)
0.EL(r,0) = 9,E%a,0) + 4.E(a, ). (6)

Using the identity Z;(x)=Z,_1(x)—(€/x)Z(x), where Z,

stands for either JJ, or Hi}), we can determine the expan-

sion coefficients. Abbreviating x=ka, we find [6]
ne ((nx)e o(x) — o ((nx)ef y(x)

nd (nx)HM (x) — o (nx)H,V (x) ’

(M

b{’(‘xyn’) =
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Jo(x) - b)) HP (x)

d{’(x5n) = J (nx)
{
J o1 (@) HP () - T () HY, (x)
= d ) (8)
b((x)

where b? denotes the denominator of b,.

Resonance occurs when the magnitude of one or more
internal expansion coefficients becomes very large. From
Eq. (8) we see that resonance occurs when b? is small,
thus for 53— 0 we obtain the condition

Joa(nka) 1HY, (ka)
Jnka) n HV(ka)

9

For example, at x=ka =7 and n=2.745, |d,| becomes large
at £=6, whereas 0<|b,/<1, as shown in Fig. 2.

For ka=m, b‘,? vanishes at n=2.745-i1.506 X 1073, but
this is nonphysical because it describes a material that is
producing energy, not absorbing it. One might intuitively
think that the resonance condition is given by 2ma=¢€n\,
but this only holds when a >\ (geometric optics), but not
in the Mie regime. More example resonance conditions for
the TM mode are given in Table 1a.

The TE mode can be analyzed in a similar way, and the
resonance condition can be derived. It is given by

Josnka)  HPyka) (€-1)(n*-1)
=n - .
Jei(nka)  HY, (ka) nka

(10)

From Eq. (10), we find some example resonance condi-
tions for the TE mode that are given in Table 1b.

A similar analysis can be carried out in three dimen-
sions to find the spherical resonances.

3. FINITE-DIFFERENCE TIME DOMAIN
ALGORITHMS

A. Standard FDTD Algorithm

The propagation and scattering of electromagnetic radia-
tion is governed by Maxwell’s equations. In nonconduct-
ing, dispersionless, linear isotropic media they can be ex-
pressed in the form
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Fig. 2. Expansion coefficients for a resonance. Absolute values
of (a) d; and (b) b, respectively.
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Table 1. Examples of Resonance Conditions for
TM and TE Modes®

(a) TM Mode
Radius a Refractive Index n Mode Number ¢
0.50 A 2.745 6
0.75 \ 2.310 8
1.00 A 2.717 10
(b) TE Mode
Radius a Refractive Index n Mode Number ¢
0.50 A 2.683 6
0.75 \ 2.529 9
1.00 A 2.887 11

“\=incident wavelength
—poH=VXE, (11)

cdE=VxH-J, (12)

where the magnetic field H and the electric field E are
functions of position r=(x,y,z) and time . We assume
that both magnetic permeability u and electric permittiv-
ity ¢ are functions of r but not of ¢. J=dJ(r,?) is a given
external source current, and we also assume that the
charge density vanishes everywhere, V:(¢E)=0). In free
space without boundaries, Maxwell’s equations reduce to
the wave equation in each component and can be solved
analytically, but when there are boundaries between dif-
ferent media there are no general analytic solutions. For
example, in the Mie scattering problem discussed in the
previous section, Maxwell’s equations can be solved only
for highly symmetric scatterers such as infinite cylinders,
spheres, and certain infinitely periodic structures. In the
case of more complicated boundaries, numerical methods
must be used.

The FDTD algorithm is popular because it is easy to
program and can handle arbitrary scatterer shapes, and
it gives the time dependence of the electromagnetic fields.
The FDTD algorithm is derived by replacing the deriva-
tives in Maxwell’s equations with central finite-difference
(FD) approximations. The FD approximation to a deriva-
tive is given by

dflx)  d.flx)

dx Ax

, (13)

where d, is a difference operator defined by d,f(x)=f(x
+Ax/2)-flx—Ax/2). For reasons that will soon be obvious
we call Eq. (13) the standard (S) FD approximation.
Analogously defining d,, d,, and d;, we define the vector
difference operator

d=dix+d,§+d.z, (14)

where X,y,Zz are unit basis vectors in Cartesian coordi-
nates.

Replacing the derivatives in Eq. (11) and Eq. (12) with
the S-FD approximation, we obtain what we call the stan-
dard finite difference model,
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At
dH = —d X E, (15)
¢ uh

tht+At/2 — A_}id X Ht+At/2 _ %JHM&’ (16)

€

where we write H(r,t) — H! (similarly for E and J) and
have set Ax=Ay=Az=h (uniform numerical grid). In order
to take central FDs with respect to time, d,H is evaluated
at t and d;E at ¢+A¢/2. Although it is suppressed in the
notation, each electromagnetic field component is located
at a different point on the numerical grid. For example, in
the TE mode (see Section 2) taking E, =E (x,y+h/2,t),
E,=E (x+h/2,y,t), and H,=H,(x,y,t+At/2), we can
model Maxwell’s equations with central FDs. Other
choices are possible.

Expanding d,H(r,t) and d,E(r,¢+A¢/2) and solving for
H(r,t+At/2) and E(r,t+At) yields what we call the
S-FDTD algorithm,

Ht+At/2 — Ht—At/Z _ ﬁd X Et, (17)
wh

Et+At — Et + ﬁd X Ht+At/2 _ thmﬁz‘
eh e

(18)

Given H(r,t—At/2) and E(r,0), all subsequent fields can
be calculated. Notice that the FDTD algorithm does not
explicitly include the boundary conditions at the media
interfaces. So long as H(r,t—A¢/2) and E(r,0) satisfy all
boundary conditions, then all subsequent electromagnetic
fields calculated with the FDTD algorithm satisfy the
boundary conditions. This is because the boundary condi-
tions derive from Maxwell’s equations.

If an initial electromagnetic field that satisfies the
boundary conditions is not known, the initial fields can be
set to zero and we can generate the incident field with the
source term J by turning it on at #=0. Since a zero field
satisfies the boundary conditions, the electromagnetic
field generated by the source continues to satisfy them as
it interacts with the scatterer.

In the general Mie scattering problem, we do not know
an initial field that satisfies the boundary conditions, so
the incident field must be generated by a source term. The
total electromagnetic field (H,E), can be decomposed into
the sum of the incident field (H?,E°) and the scattered
field (H®,E®). The incident field (H?,E°) propagates as if
there were no scatterer and thus satisfies

- uodH=V X E, (19)

g, E=V X H, (20)

where u=puy and =g in the medium in which the scat-
terer is immersed. For simplicity let us assume that u
=uo everywhere. Taking J=0 and subtracting Eq. (19)
from Eq. (11) and Eq. (20) from Eq. (12) yields Maxwell’s
equations for the scattered fields

- o H* =V X E5, (21)
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B =V X H* - (e —g0)9,E°. (22)

The last term on the right of Eq. (22) is an effective source
current that gives rise to the incident field. In the Mie
scattering problem the incident electric field is E°
=pe'lr-ot) where P is its polarization, k is the wavenum-
ber vector, and w is the angular frequency.

The FDTD calculation is initialized by HS(r,t—Az/2)
=0 and E5(r,0)=0. To compute real fields we take the
source current to be

J(r,t) = (¢ - £0)O(t)I[- i wE (r, )], (23)

where J means the imaginary part, and O is a pseudo
step function that turns on the current gradually to sup-
press numerical transients. We define ©(t<0)=0 and
O(t=0)=1, with a gradual rise on the interval 0<t¢<r
where 71is the “rise time.” Usually 7is set equal to several
wave periods, but the calculation is generally insensitive
to both the value of 7 and the exact form of 0. In Eq. (23)
we take the imaginary rather than the real part so that
the time dependence is sin(wt), which vanishes at ¢t=0.

We hope that after a “sufficient” number of time steps
N, the FDTD calculation converges to a true scattered
field. As we will see, the appropriate value of N is not al-
ways obvious at first sight.

Any numerical algorithm is potentially unstable. For
the S-FDTD algorithm it can be shown that A¢ and A
must satisfy the Courant—Friedrichs—Lewy (CFL) condi-
tion [10],

wAt 1
— <=, (24)
kh yD

where k=|k|, and D is the number of spatial dimensions.

B. Nonstandard FDTD Algorithm

The error of the S-FD approximation Eq. (13) is defined
by esf(x)=(d,—d,/h)f(x) and egxh?. The error can be im-
proved by reducing the grid size, except in one
dimension—the computational cost rises faster than the
accuracy. For example, reducing the grid size to half, the
error becomes

h €g
h—>5:>€s—>z. (25)

On the other hand, in D dimensions the computational
cost is Cgx1/(hPAt). Additionally, the time interval At is
proportional to 2 because of the CFL condition. Thus the
computational cost becomes

h
h— 5= Cg— 2P+1Cg. (26)

One could try to reduce the error by using higher-order
FD approximations, but this not only complicates the al-
gorithm, a higher-order difference equation may also have
unstable spurious solutions. Using what is called a non-
standard (NS) FD approximation [11], however, it is pos-
sible to greatly reduce the error of the FDTD algorithm
without reducing the grid spacing or using higher-order
FD approximations.
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The NS-FD approximation in one dimension has the
form

@) dfw)
dx  s(Ax)’

(27)

where s(Ax) is a “correction function.” With an appropri-
ate choice it is sometimes possible to reduce the approxi-
mation error to zero. It might appear that the choice

d.f(x)
)
would yield an exact FD expression, but this choice is not
always valid because the right side of Eq. (27) must con-

verge to f’(x) in the limit Ax — 0. Thus, from the definition
of a differential, s(Ax) must satisfy

lim s(Ax) = Ax. (29)
Ax—0

s(Ax) (28)

Expanding s(Ax) in a Taylor series,
s(Ax) =s(0) + Axs'(0) + ---. (30)

When Eq. (30) satisfies Eq. (29), s(Ax) requires two condi-
tions, which are s(0)=0 and s’(0)=1. For the plane wave
o(x)=e*** Eq. (28) is valid. Putting s(Ax)=s(k,Ax) into
Eq. (27) where

2 kAx
s(k,Ax) = Z sin > (31)

gives an exact FD expression for ¢'(x).

In two and three dimensions, however, there is no exact
NS-FD expression for d,¢(r), where ¢(r)=e*** and k
=k(cos 0,sin #). Away from media boundaries in every ho-
mogeneous region, Maxwell’s equations (neglecting source
currents) reduce to the wave equation

(- 2V y(r,t) = 0, (32)

where ¢ is an electromagnetic field component and ¢ is
the velocity of the propagation in the medium. We there-
fore need a “high accuracy” NS-FD expression for VZe.
For reasons explained in [8] we construct a new vector dif-
ference operator d, such that (dy-d)¢/s(k,k)? is a high-
accuracy approximation to V2¢. We have found that

1-vy U
(f:dx(d§ +dl+ —d§d3>
3

d0=d+

7
+ ﬁdy(dz +d2+ §d§d§>

n
+ idz(d,% +d)+ gdidﬁ) ) , (33)
where
2 1
=———(kh)?- -+, 34
r=3 90( ) (34)

2 (1913 52
+

i — - kn)2 . (35
7= 5"\ 50400 252>( V. (35)
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For simplicity let us evaluate the error of the S-FD and
NS-FD approximations for V2¢ in two dimensions. The er-
ror of the S-FD approximation becomes

1 d-d) E2(kh)?
€g=— v2- e =

sin® 26. (36)

The error of the NS-FD approximation is

1 (do-d)
exs=—| V? ¢

o\ s(k,h)?

kz(kh)6< sin% 26
= v

= — sin® 26. (37)
24192

Thus in two dimensions eg is proportional to (kh)2
whereas eyg is proportional to (kh)8. There are similar ex-
pressions in three dimensions.

Let us now derive the NS-FDTD algorithm. In many
problems u is a constant with respect to position and we
are more interested in the electric field than in the mag-
netic field. In this case it is convenient to replace H with
H,=nhH/At in Eq. (17) and Eq. (18). In addition we re-
place d with dj in Eq. (18) and obtain

H’Zi—At/Z — HZ—At/Z —dx E!, (38)

2
Et+At - E! @d Ht+At/2 _ thhﬁL‘/Z 39
- +—dp X " & NS ( )

&

where wuy=s(w,At)/s(k,h)=sin(wAt/2)/sin(kh/2), and &
=sin2(\ekh/2)/sin2(kh/2). Notice that in the limits &, At
—0, ug—-c (c is the propagation velocity in the medium in
which the scatterer is immersed) and g — .

Generalizing the derivation of the CFL condition, the
stability condition for the D dimensional NS-FDTD algo-
rithm becomes

wAt ZV/B 2 T
— =< arcsin —sin| — | |, (40)
kh o« My, \2\D

where Mp is given in [8]. The maximum values of wA¢/kh
from Eq. (24) and Eq. (40) are shown in Table 2 for the
S-FDTD and NS-FDTD algorithms. But these values
have been corrected from those given in [8] and are shown
in Table 2.

Table 2 indicates that the NS-FDTD algorithm allows a
somewhat larger time step over the S-FDTD algorithm as
D grows. For each grid point, the computational cost of
the NS-FDTD algorithm is somewhat larger than
S-FDTD, but this larger cost is somewhat offset by a
larger time step and by the fact that a coarser grid can be
used.

Table 2. Maximum Values of wAt¢/kh for S-FDTD
and NS-FDTD Algorithm Stability

Dimension D S-FDTD NS-FDTD
1 1.000 1.000
2 0.707 0.799
3 0.577 0.746
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4. SCATTERER REPRESENTATION ON GRID

A high-accuracy FDTD algorithm alone does not always
guarantee a high-accuracy result. Other errors enter into
the total calculation from such factors such as how the
computational boundaries are terminated and how the
scatterers are modeled on the numerical grid. The error of
the FDTD algorithm can be made very small and good ab-
sorbing boundary conditions are available [9,12], so the
largest remaining source of error is the representation of
the scatterer.

The simplest representation is the staircase model. In
Fig. 3(a), a scatterer of permittivity ¢; (gray area) is im-
mersed in a medium of permittivity o (white area), thus
e(r)=g; if grid point r lies within the scatterer, and (r)
=gy otherwise. Although visual appearance of the model
does not necessarily correlate with accuracy in FDTD cal-
culations, the staircase model obviously fails to preserve
important symmetries of the shape as the center is
shifted [Figs. 3(b) and 3(c)], and large errors are likely to
arise.

A better model, called the “fuzzy model,” can be derived
from Ampére’s law,

fH-ds:fsatE-dS. (41)
C S

First let us consider the TM mode as shown in Fig. 4(a).
Using Stoke’s theorem, the left side of Eq. (41) becomes

fH~ds=f(V><H)-dS. (42)
c s

If Ax and Ay are sufficiently small, H is essentially con-
stant and can be removed from the integration to give
AxAy(V X H),. Similarly ¢,E can be removed from the in-
tegration on the right side of Eq. (41), and we obtain

&
51 :

(@

(b) (c) (d)
Fig. 3. (a) Staircase model. A and C are inside (gray), B and D
are outside (white) the scatterer. (b)—(d) Circle of radius 6A (h
=grid size) centered at [(x+s)h,(y+s)h] (x,y are integers) for
shift parameters s=0.0, 0.25, 0.5 for (b), (c), (d), respectively.
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G >
&2
A \
Hy & ©Ez Hy 5
o

Hx
AX
(@)

(b) (c) (d

Fig. 4. (a) Integration of H on contour about E, grid point. (b)—
(d) Effect of shifting the center of a circle of radius 6A. Center at
[(x+s)h,(y+s)h] (x,y are integers). 2, ,e(x,y) is invariant with re-
spect to shifts s=0.0, 0.25, 0.5 for (b), (c), (d), respectively.

(V X H)z = <8>xyath’ (43)

where [gedxdy=AxAy(e),,, and (&),, means the average of
e about on the x—y surface. For example, in Fig. 4, com-
paring the right sides of Eq. (41) with Eq. (43), we obtain

S’ S’
(e)yy =21 Axdy +e9| 1- Ay ) (44)

The fuzzy model assures a continuous range of values be-
tween &1 and &9 on the calculation grid rather than the
binary values of the staircase model. Hence the symme-
tries are better preserved as the scatterer is shifted in
Figs. 4(b)-4(d).

In the TE mode calculations, the fuzzy model can be de-
rived by integrating E, on the y—z plane and E, on the
x—z plane (Fig. 5). Because the electromagnetic fields are
constant in the z direction, the permittivity ¢ is replaced
by line averages. For example, we consider the Maxwell
equation for E,,

e0,E, = ,H,. (45)

As the grid point is (x,y), if E, is positioned at r=(x,y
+Ay/2) in the Yee algorithm [Fig. 5(a)l, e(r) is replaced by,

&
Ey . Hz Ey Ex Ex
C Cc
. & &
& Ex ANy TEy
— ay Hz\ l ALY
N

S

N )
Ey \ Hz Ey 1r Ex : ° Ex
AXN aX
(@ ™. (b)

Fig. 5. Fuzzy model for the TE mode. Closed curves centered at
(a) E, and (b) E, for Ampére’s law.
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y+Ay L' L’
(e(r)), = fy elx,y)dy = 81(5) + 82(1 - 5) (46)

Similarly in the Maxwell equation for E, at r=(x
+Ax/2,y) [Fig. 5(Mb)], e(r) is replaced by (e(r)),
= [*M(x,y)dx.

Although the fuzzy model improves the accuracy of
FDTD calculations, it does not accurately represent fea-
tures that are much smaller than the grid spacing. For
example, in a dielectric of refractive index n the NS-
FDTD algorithm empirically gives high accuracy for grid
spacing Ax=Ay=h<\/(8n). But to compute accurately
the transmission of a dielectric grating with a groove
spacing of N\/20 (refractive index is n), we must set A
<\/(20n). While it is possible to use finer sub-grids em-
bedded in coarse ones to capture small features, At must
be scaled down to satisfy the CFL stability condition for
finer grids, and numerical instabilities also can arise at
the interface between the coarse and fine grid. Some
progress in model representation is discussed in [13].

5. SIMULATION OF WHISPERING GALLERY
MODES

A. Transverse Magnetic Mode

We calculated the scattered field intensity at a resonance
(WGMs) excited by an infinite plane wave impinging upon
a dielectric cylinder in the TM mode (electric field parallel
to the cylinder axis) and compared our results with the
analytic solution of Mie theory. For example, using Eq. (9)
we find that the €=6 resonance is excited in a cylinder of
radius a=0.5\ if the refractive index is set to n=2.745. We
used both the S-FDTD and NS-FDTD algorithms and ter-
minated the computational domain with a Berenger’s
PML using 16 layers. The scatterer was represented on
the grid using the fuzzy model introduced in Section 4. We
used the simulation parameters listed in Table 3. Since
electromagnetic computations are scalable, to simulate
infrared light (A\=1280 nm) impinging on a cylinder of ra-
dius a=0.5A=640 nm we would take the grid interval to
be A=20 nm, but the computational domain would still be
128X 128 grid spacings (in other words, \/hA would re-
main unchanged).

Using the NS-FDTD and S-FDTD algorithms we com-
pute the scattered field intensity |E|? and compare the re-
sults with Mie theory in Figs. 6(a)-6(c). In Fig. 6(d) we
plot |E%|% on a circular contour of radius 1.1a around the
cylinder center and compare NS-FDTD and S-FDTD re-
sults with Mie theory. Intensity is visualized on a color
scale ranging from blue (low) to red (high).

As is obvious in Fig. 6(d), the NS-FDTD algorithm is
much more accurate than the S-FDTD algorithm. In this
calculation, the discretization (ratio of wavelength to grid

Table 3. Computational Parameters of Whispering
Gallery Mode Simulation in the Mie Regime

Grid Size 10 nm X 10 nm
Wavelength 640 nm
Cylinder radius 320 nm

Computation space 1280 nm X 1280 nm
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50

c 8888

Scattered Intensity of Ez

] 30 60 90 120 150 180

Angle [degree]
(d)
Fig. 6. (Color online) FDTD calculation of [E|? in the TM mode.
(a) Analytic solution. (b), (¢) Simulation results by S-FDTD and
NS-FDTD algorithms at 100,000 time steps, respectively. (d) An-
gular intensity distributions.

interval inside the cylinder) is A/h=64, which is neces-
sary to get accurate results using the NS-FDTD algo-
rithm. However, in off-resonance calculations, for ex-
ample at n=2.7, the NS-FDTD algorithm gives highly
accurate results only for A\/h =16. We believe that this dif-
ference is due to errors in the scatterer model (shape rep-
resentation) on the grid, because WGMs confine light to
the cylinder and are sensitive to the shape, especially in
the Mie regime.

B. Transverse Electric Mode

The calculation for the TE mode (electric field perpendicu-
lar to the cylinder axis) is similar to that of the TM mode,
but now there are now two field components (E, and E,)
located at different positions on the numerical grid. We
chose the incident wave vector to be in the direction of the
positive x axis, and the incident electric field to be polar-
ized in the y direction. Since the E} is relatively small, we
examine the intensity of the scattered E, field.

From Eq. (7), we find that the €=6 resonance mode is
excited at a=0.5N and n=2.683. We computed the scat-
tered field intensities using the S-FDTD and NS-FDTD
algorithms and compared the results with Mie theory in
Fig. 7. In the TE mode too, about 100,000 time steps are
needed to obtain convergence.

As shown in Fig. 7, the NS-FDTD algorithm and the
fuzzy model greatly improved the simulation accuracy.
But although the accuracy to the NS-FDTD calculation is
still far superior to the S-FDTD one, the accuracy of the
FDTD calculation appears to be lower in the TE mode
than in the TM mode. This is caused by the approxima-
tion of Gauss’s law, which is given by

D=¢E, V-D=0 (47)
for zero charge density. Using a vector identity, we obtain
V- (eE)=E:-Ve+eV -E=0. (48)

In the TM mode V-D=0=E:Ve=¢V-E=0, because E is
parallel to all media interfaces. In the TE mode however
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Fig. 7. (Color online) FDTD calculation of |E%|? in the TE mode.
(a) Analytic solution. (b), (¢) Simulation results by S-FDTD and

NS-FDTD algorithms at 100,000 time steps, respectively. (d) An-
gular intensity distributions.

E=E+E , where E; is parallel to Ve and E, is perpen-
dicular to one. Thus V-D=0=E;-Ve+eV-(E+E )=0.
This means that the direction of Ve matters in the TE
mode but not in the TM mode. Thus, to improve the accu-
racy we must include information about Ve in the algo-
rithm.

C. Convergence

For the calculation shown in Fig. 6, it took 100,000 time
steps for the calculation to converge. At A=640 nm
100,000 time steps correspond to about 0.24 [us] in real
time. This long convergence time is not just an artifact of
the computational method, but is due to the fact that the
electromagnetic field outside the cylinder is weakly
coupled to the inside. The field energy density at reso-
nance inside the cylinder is much larger than outside.
Thus when the resonance is excited from outside the cyl-
inder, the resonance takes a long time to build up. In our
example, for ¢/A¢<100,000, the scattered fields outside
the cylinder are described very well by Eq. (2) with the
£=6 mode excluded. On the other hand, off-resonance con-
vergence is very rapid. In Fig. 8, using the parameters of
Table 3 we compared the convergence for n=2.745 (reso-
nance) and n=2.7 (off-resonance) for 1,000,000 time steps.

——Resonance === Off-resonance
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: : \ |
2 =%
= LT
g 0.1 ] \,M D
=
=
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0.001
1 10 100 1000 10000 100000 1000000
Time steps

Fig. 8. (Color online) Convergence time for resonance and off-
resonance modes. The ordinate is the rms error relative to Mie
theory.
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Figure 8 shows that the intensity in the FDTD resonance
calculation rises so slowly that it seems to be constant
over hundreds and even thousands of time steps. Thus if
one does not realize that a resonance exists, one would be
tempted to stop the calculation in the belief that it has
converged. In this case we know the correct answer from
Mie theory, but for irregular shapes for which no analyti-
cal solutions exist, the FDTD algorithm must be iterated
for enough time steps to ensure true convergence.

Instead of exciting WGMs with an infinite plane wave
impinging on the outside of the cylinder, they can also be
excited by a point source inside the cylinder. In this case,
the ¢=6 resonance develops after just a few thousand
time steps [see Figs. 9(a)-9(c)]. In Fig. 9(d), we compare
the rise of the WGM electric field intensity at the cylinder
surface due to excitation by an external infinite plane
wave and by an internal point source. As shown in Fig.
9(d), the surface intensity due to a point source builds up
rapidly compared with plane wave excitations. But the
point source must be placed where the intensity is high
for the mode to be excited. In the example of Fig. 9, the
source placed at r=(0,0.9a), but at the cylinder center it
would not excite the £=6 resonance.

As seen in Fig. 6 and Fig. 7, the S-FDTD algorithm still
has a large error even after 100,000 time steps. Finally,
we investigated the root mean square (rms) error in the
angular distribution of scattered intensity as a function of
grid fineness for the S-FDTD and NS-FDTD algorithms in
the WGM calculations. In the TM and TE resonance
modes, we calculated the rms error relative to Mie theory
at each \/h as shown in Fig. 10. In Fig. 10(a), we see that
the NS-FDTD result converges much faster than S-FDTD
one in the TM mode, and we can estimate sensitivity of
the shape (model representation) error for the S-FDTD
and NS-FDTD algorithms. In FDTD calculations, the er-
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Fig. 9. (Color online) Whispering gallery mode excitation using
a point source. (a)-(c) EZ on a color scale ranging from blue (mi-
nus) to red (plus), at 200, 1000, and 2000 time steps. The white
dot is a point source. (d) Rise in surface intensity with the infinite
plane wave and point source excitation.
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Fig. 10. (Color online) RMS error in the angular distribution of

scattered intensity as a function of grid fineness (a) at 100,000
X (N/h)/64 time steps in the TM mode, (b) in the TE mode.

ror consists mainly of algorithm error €4 and shape error
€g; absorbing boundary and round-off errors are ignored
because they are relatively small. Thus the errors of the
S-FDTD and NS-FDTD calculations are given by

€S()\/h) =~ E[S&(}\/h) + Eg(%/h), (49)

(:NS()\/h) = ?IATS()\/h) + z,gTS()\/h) . (50)

In the TM mode at \/h=32, 228(32) is very small we can
estimate the shape error of the NS-FDTD calculation to
be

&5 = N6 = 0.384. (51)

On the other hand the algorithm error of S-FDTD is pro-
portional to (/)2 so Ei(32)=2i(16>/ 4, and the maximum al-
gorithm error at \/h=32 is €516/4. Thus we estimate the
minimum of shape error of the S-FDTD calculation to be

(16)

min[&5%?] = 62 - = 6.368. (52)

Because E§8(32)<min[2§32)], we conclude the shape error

for the NS-FDTD algorithm is smaller than that of the
S-FDTD one. In the TE mode [Fig. 10(b)], because they
use different computational molecules the S-FDTD and
NS-FDTD algorithms handle information about Ve differ-
ently, as discussed in Section 5.B. So the shape errors are
likely to be different in the TE mode.
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6. DISCUSSION AND CONCLUSIONS

We have demonstrated that the NS-FDTD algorithm can
accurately compute WGMs in the Mie regime, which is a
severe test of its performance. Compared with off-
resonances the number of time steps needed for the cal-
culation to converge is very large, and the convergence is
slow because the coupling from outside to inside is weak.
For irregularly shaped scatterers, where there is no ana-
lytic solution with which to compare, it is advisable to run
the FDTD calculation enough time steps to confirm con-
vergence. Compared to the S-FDTD algorithm, the NS-
FDTD algorithm gives superior accuracy.

We believe that the dominant source of error in WGM
calculations is the representation of the scatterer shape
on the numerical grid, and the NS-FDTD algorithm re-
duces it more than the S-FDTD one. To calculate the
WGMs correctly, a finer grid is needed than for off-
resonance. For example, in the TM mode for a cylinder of
radius 0.5\ and refractive index n=2.7 (off-resonance in
Fig. 8), the NS-FDTD algorithm is in excellent agreement
with Mie theory using even a grid discretization of /A
=16, and the calculation converges after 5,000 time steps.
However, on resonance when n=2.745, we must set \/h
=64 to get the same accuracy, and the calculation takes
more than 100,000 time steps to converge.

The TE mode seems to more sensitive to shape repre-
sentation than the TM mode. Whereas in the TM mode E
is parallel to the boundaries, in the TE mode E has com-
ponents both perpendicular and tangential to the bound-
aries. Simply averaging ¢ does not take into account in-
formation about the direction of the boundary interfaces
that matter more in the TE mode.

Of course accuracy can always be increased by using
more grid points to represent the shape, but this in-
creases computational cost. Using the graphics processing
unit (GPU), FDTD calculations can be dramatically accel-
erated [14]. Ultimately, however, a more accurate scat-
terer model on a coarse grid is needed to extend the range
and speed of FDTD calculations. We have empirically ex-
amined some promising modifications to the fuzzy model,
but have yet to derive them analytically and demonstrate
their generality.
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