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We demonstrate a finite-difference time-domain (FDTD) modeling of a cloak with a nondiagonal permittivity tensor. Numerical
instability due to material anisotropies is avoided by mapping the eigenvalues of the material parameters to a dispersion model.
Our approach is implemented for an elliptic-cylindrical cloak in two dimensions. Numerical simulations demonstrated the stable
calculation and cloaking performance of the elliptic-cylindrical cloak.

1. Introduction

An optical cloak enables objects to be concealed from
electromagnetic detection. Pendry et al. developed a method
to design cloaks via coordinate transformations [1]. The
coordinate transformation is such that light is guided around
the cloak region. Material parameters (permittivity and
permeability) can be obtained in the transformed coordinate
system and put into Maxwell’s equations. This approach
enables one to design not only cloaks but also other
metamaterials that can manipulate light flow. For example,
concentrators [2], rotation coatings [3], polarization con-
trollers [4–6], waveguides [7–11], wave shape conversion
[12], object illusions [13–15], and optical black holes [16,
17] have been designed. However, not many metamaterials
have been realized in the optical region [18–25], because
material parameters given by coordinate transformations
have complicated anisotropies.

Numerical simulations are useful to analyze complicated
metamaterial structures. In this paper, we present a finite-
difference time-domain (FDTD) analysis of a cloak. The
FDTD method has gained popularity for several reasons: it
is easy to implement, it works in the time domain, and its
arbitrary shapes can be calculated [26–29]. FDTD modelings
of cloaks with a diagonal (uniaxial) permittivity tensor have
been demonstrated [30–38], but a cloak with a nondiagonal
permittivity tensor has never been calculated by the FDTD

method. The diagonal case can be stably calculated by
mapping material parameters having values less than one to
a dispersion model [31]. However, we found that mapping
the nondiagonal elements to dispersion models causes the
computation to diverge.

In this paper, we analyze the numerical stability for a
cloak with a nondiagonal permittivity tensor and derive the
FDTD formulation. We apply our method to simulate light
propagation in the vicinity of an elliptic-cylindrical cloak.
To the best of authors’ knowledge, this is the first time that
a cloak with a nondiagonal anisotropy has been calculated
using the FDTD method.

2. Numerical Stability for Nondiagonal
Permittivity Tensor

In the stability analysis, we confirm that the FDTD method
for a cloak with a diagonal permittivity tensor cannot directly
be extended to the nondiagonal case. Under a coordinate
transformation for a cloak [39], material parameters can be
expressed as

εi j = μi j = ±√ggi j , (1)

where εi j is the relative permittivity, μi j is the relative permea-
bility, gi j is the metric tensor, and g = det gi j . Because εi j , μi j

are constructed from the symmetric metric tensor gi j , they
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Figure 1: Elliptic-cylindrical cloak. (a) Cartesian coordinates: a, b are inner and outer axes; ka, kb are the perpendicular axes. (b)
Transformed coordinates.

are symmetric. Consequently, εi j , μi j have real eigenvalues
with orthogonal eigenvectors and are thus diagonalizable.
The eigenvalues, λ, of εi j , μi j for an eigenvector V are defined
by

εi jV = μi jV = λV. (2)

The phase velocity of light in a material is given by c = c0/λ
(c0 = vacuum light speed), and the Courant-Friedrichs-Lewy
(CFL) stability limit becomes

Δt ≤ λh

c0
√
d

, (3)

where Δt is the time step, h is the grid spacing, and d =
1, 2, and 3 dimensions. Since the FDTD stability depends
on the eigenvalues of εi j and μi j , to analyze nondiagonal
cases, we must first find the eigenvalues and diagonalize
εi j and μi j . After the diagonalization, the FDTD method
for diagonal cases [31–38] can be applied. For diagonal εi j

and μi j , elements having values less than one are replaced
by dispersive quantities to avoid violating the causality and
numerical stability [40–44].

In summary, the FDTD modeling for nondiagonal εi j and
μi j requires three steps:

(1) find the eigenvalues and eigenvectors and diagonalize
the material parameters,

(2) map the eigenvalues having values less than one to a
dispersion model,

(3) solve Maxwell’s equations using the dispersive FDTD
method.

3. FDTD Formulation of
the Elliptic-Cylindrical Cloak

Two designs of elliptic-cylindrical cloaks have been pro-
posed. One has diagonal εi j and μi j in orthonormal elliptic-
cylindrical coordinates [45, 46], and in the other εi j and μi j

are nondiagonal in Cartesian coordinates [47, 48]. We derive
a FDTD formulation for the latter in the transverse magnetic
(TM) polarization.

3.1. Diagonalization. Figure 1 shows an elliptic-cylindrical
cloak in Figure 1(a) Cartesian coordinates and Figure 1(b)
transformed coordinates. The inner axis a, the outer axis
b, and the perpendicular axes ka and kb are depicted. The
elliptic-cylindrical cloak is horizontal when k > 1, and

vertical when k < 1. In the cloak region, ka ≤
√
x2 + k2y2 ≤

kb, the material parameters are expressed by

εi j = μi j =

⎡

⎢
⎢
⎢
⎣

εxx εxy 0

εxy εyy 0

0 0 εzz

⎤

⎥
⎥
⎥
⎦

, (4)

where

εxx = r

r − ka
+
k2a2R2 − 2kar3

(r − ka)r5
x2,

εxy = k2a2R2 − ka
(
1 + k2

)
r3

(r − ka)r5
xy,

εyy = r

r − ka
+
k2a2R2 − 2k3ar3

(r − ka)r5
y2,

(5)

εzz =
(

b

b− a

)2 r − ka

r
, (6)
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where r =
√
x2 + k2y2 and R =

√
x2 + k4y2. From (4) to (6)

we can obtain three eigenvalues

λ1 = α− 1
α + 1

, λ2 = 1
λ1

, λ3 = εzz, (7)

where

α =
√
√√

1 +
4r5(r − ka)

k2a2R2
(
x2 + y2

) . (8)

Since εi j is symmetric, it is diagonalized by the eigenvalue
matrix Λ and its orthogonal matrix P as follows:

εi j = PΛPT , (9)

where

Λ =

⎡

⎢
⎢
⎢
⎣

λ1 0 0

0 λ2 0

0 0 λ3

⎤

⎥
⎥
⎥
⎦

, (10)

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

εxy
β

(
λ2 − εyy

)

β
0

(
εyy − λ2

)

β

εxy
β

0

0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (11)

where β =
√
ε2
xy + (λ2 − εyy)2.

3.2. Mapping Eigenvalues to a Dispersion Model. From (7)
and (8), λ1 and λ3 have values less than one in the cloak
region (ka ≤ r ≤ kb). Thus, λ1, λ3 must be replaced by
dispersive quantities by using (for example) the Drude model

λi = ε∞i −
ω2
pi

ω2 − jωγi
, (i = 1, 3), (12)

where ω is the angular frequency, ε∞i is the infinite-frequency
permittivity, ωpi is the plasma frequency, and γi is the
collision frequency. For simplicity, we consider the lossless
case, γi = 0. Then the plasma frequencies are given by ωpi =
ω
√
ε∞i − λi, where ε∞i = max(1, λi).

3.3. FDTD Discretization. Using the diagonalized material
parameters and eigenvalues mapped to the Drude model, we
derive an FDTD formulation to solve Maxwell’s equations,

∂D
∂t
= ∇×H,

−∂B
∂t
= ∇× E,

(13)

where D is the electric flux density, H is the magnetic field,
B is the magnetic flux density, and E is the electric field. In
the TM polarization, electromagnetic fields reduce to three
nonzero components Ex, Ey , and Hz (Dx, Dy , and Bz). The

D- and B-update equations are obtained using Yee algorithm
[26–29] as follows:

Dn+1
x = Dn

x +
Δt

h
dyH

n+1/2
z ,

Dn+1
y = Dn

y −
Δt

h
dxH

n+1/2
z ,

(14)

Bn+3/2
z = Bn+1/2

z − Δt

h

(
dxE

n+1
y − dyE

n+1
x

)
, (15)

where we simply write Dx(t = nΔt) → Dn
x (n = integer) and

dx, dy are the spatial difference operators defined by

dx f
(
x, y

) = f
(
x +

h

2
, y
)
− f

(
x − h

2
, y
)

,

dy f
(
x, y

) = f
(
x, y +

h

2

)
− f

(
x, y − h

2

)
.

(16)

To find the E-update equations, we consider the relation

D = ε0ε
i jE, (17)

where ε0 is the vacuum permittivity. From (9), we obtain

ε0E =
(
εi j
)−1

D = PΛ−1PTD. (18)

Substituting (10) in (18) and multiplying λ1λ2 by both sides,
we obtain

ε0λ1λ2Ex =
(
λ1t

2
2 + λ2t

2
1

)
Dx + t1t2(λ1 − λ2)Dy , (19)

ε0λ1λ2Ey =
(
λ1t

2
1 + λ2t

2
2

)
Dy + t1t2(λ1 − λ2)Dx, (20)

where t1 = εxy/β and t2 = (λ2 − εyy)/β. Substituting the
Drude model for λ1 as shown in (12) and using the inverse
Fourier transformation rule, −ω2 → ∂2/∂t2, (19) becomes

ε0λ2

(

ε∞1
∂2

∂t2
+ ω2

p1

)

Ex

=
[
(
ε∞1t

2
2 + λ2t

2
1

) ∂2

∂t2
+ ω2

p1t
2
2

]

Dx

+ t1t2

[

(ε∞1 − λ2)
∂2

∂t2
+ ω2

p1

]

Dy.

(21)

For the discretization, we use the central difference approxi-
mation and the central average operator,

∂2

∂t2
En
x =

En+1
x − 2En

x + En−1
x

Δt2
,

En
x =

En+1
x + 2En

x + En−1
x

4
.

(22)

The central average operator improves the stability and
accuracy [40, 49, 50]. Similarly, Dx and Dy are discretized,
and we obtain the Ex-update equation

En+1
x = −En−1

x + 2
a−1
a+

1
En
x +

1
ε0λ2a

+
1

×
[
b+

1

(
Dn+1

x + Dn−1
x

)− 2b−1 D
n
x

+c+
1

(
Dn+1

y + Dn−1
y

)
− 2c−1 D

n
y

]
,

(23)
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where Dn+1
y , Dn

y , Dn−1
y must be spatially interpolated due to

the staggered Yee cell [31], and

a±i =
ε∞i

Δt2
± ω2

pi

4
,

b±i =
ε∞it

2
2 + λ2t

2
1

Δt2
± ω2

pit
2
2

4
,

c±i = t1t2
ε∞i − λ2

Δt2
± ω2

pit
2
2

4
.

(24)

Similarly, the Ey-update equation is obtained by exchanging
t1 ↔ t2, Ex ↔ Ey , and Dx ↔ Dy .

To find the Hz-update equation, we consider the relation

Bz = μ0εzzHz = μ0

(

ε∞3 −
ω2
p3

ω2

)

Hz. (25)

Analogously to the Ex field, the Hz-update equation can be
obtained in the form

Hn+3/2
z = −Hn−1/2

z + 2
a−3
a+

3
Hn+1/2

z

+
Bn+3/2
z − 2Bn+1/2

z + Bn−1/2
z

μ0Δt2a+
3

,

(26)

where μ0 is the vacuum permeability.
In summary, the electromagnetic fields are iteratively

updated in the following sequence:

(1) update the components of Dn+1 according to (14),

(2) update the components of En+1 according to the
sample given in (23),

(3) update the components of Bn+3/2 according to (15),

(4) update the components of Hn+3/2 according to (26).

4. Simulation of the Elliptic-Cylindrical Cloak

We calculate electromagnetic propagation for the elliptic-
cylindrical cloak using the FDTD formulation shown in
Section 3. Figure 2 shows the simulation setup: the computa-
tional domain is terminated with a perfectly matched layer in
the x-direction, and a periodic boundary condition in the y-
direction [29]; the inside of the cloak is covered with a perfect
electric conductor (PEC); a plane wave source of wavelength
λ0 = 750 nm (400 THz) is in the TM polarization; the grid
spacing is h = 10 nm (λ0/h = 75); and the time step is given
by the CFL limit, Δt = h/(c0

√
2). Simulation parameters are

listed in Table 1.
Figure 3 shows the FDTD results for the elliptic-

cylindrical cloak at the steady state (50 wave periods).
Figure 3(a) shows calculated Hz field distributions using h =
10 nm. The wave propagates without significant disturbance
around the cloak, and the calculation is stable. The small
ripples on phase planes are purely numerical errors and can
be made to vanish by reducing the grid spacing. This can
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Figure 2: Simulation setup of the elliptic-cylindrical cloak for
incident TM polarization. Inside of the cloak is covered with a
perfect electric conductor (PEC). The gray elliptic region represents
the cloak (h: grid spacing).

Table 1: Simulation parameters for the elliptic-cylindrical cloak.

Incident wavelength λ0 750 nm

Inner short semi-axis a 500 nm

Outer short semi-axis b 1000 nm

Axis ratio k 2

Grid spacing h 10 nm

Computational domain 6 × 6 μm 2

be confirmed by calculating the radar cross section (RCS)
[29, 51]. In two dimensions, the RCS is defined by

σ
(
φ
) = lim

r→∞2πr

∣
∣Es

(
φ
)∣∣2

|E0|2
, (27)

where φ is the scattering angle, |Es(φ)|2 is the scattered
power in far field, and |E0|2 is the incident power. If there
is no significant disturbance by the object, σ approaches
zero. Figure 3(b) shows normalized RCSs on dB scale, σ/λ0,
scattered by a PEC (without cloak) and cloak using different
grid spacings, h = 20, 10, and 5 nm. The PEC or cloak using a
coarse grid spacing scatters strongly, but the RCS of the cloak
rapidly decreases as the grid spacing is reduced.

Finally, we examine the cloaking performance of the
elliptic-cylindrical cloak using the Drude model. Simulation
parameters are the same as Table 1 and the cloak is optimized
to a wavelength of 750 nm. In the wavelength band, 600 nm–
900 nm, we calculate the total cross section (TCS) defined by

σt =
∫

σ
(
φ
)
dφ. (28)

Figure 4(a) shows the calculated TCS spectrum. The TCS
rapidly increases with wavelength shifts off the optimal.
Figure 4(b) shows the RCS for several wavelengths, A:
730 nm, B: 750 nm, and C: 830 nm (normalized to the RCS
for 750 nm). For wavelengths A and C, the scattering is much
stronger than the optimal wavelength B.



ISRN Optics 5

1

0.5

0

−0.5

−1

(a)

30

60

90

120

150

180

210

240

270

300

330

−30−20 010
RCS (dB)

PEC
h = 20 nm

h = 10 nm
h = 5 nm

0

(b)

Figure 3: FDTD results for the elliptic-cylindrical cloak. (a) Hz field distributions using h = 10 nm (black lines are inside and outside shells
of the cloak). (b) Radar cross section (RCS) scattered by a PEC (without cloak) and cloak using different grid spacings, h = 20, 10, and 5 nm
(radial coordinate is dB).
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Figure 4: Cloaking performance of the elliptic-cylindrical cloak using the Drude model. (a) Total cross section (TCS) spectrum. (b) Sampled
RCSs of incident wavelengths, A: 730 nm, B: 750 nm, and C: 830 nm.
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5. Conclusion

We describe a stable FDTD modeling procedure for a cloak
with a nondiagonal permittivity tensor. When the eigenval-
ues of the material parameters are less than one, they must be
mapped to a dispersion model in order to maintain numer-
ical stability. We implement our method for an elliptic-
cylindrical cloak in the TM mode. Numerical calculations
demonstrated stable results and the cloaking performance.
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